Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures.
نویسندگان
چکیده
The spectroscopic and photocatalytic properties of a series of Au@TiO(2) core-shell nanostructures are characterized. The crystallinity of the TiO(2) shells was varied by changing the etching and calcination conditions. Measurements of the photoluminescence, transient absorption, and H(2) production rate permit us to look for correlations between the spectroscopic and catalytic behaviors. We found that there is a strong effect of crystallinity on the H(2) production rate and also the stretched exponential lifetime of the photoluminescence created by short-wavelength (266 and 300 nm) photoexcitation. As the TiO(2) crystallinity is increased, the photoluminescence lifetime increases from 22 to 140 ps in a 1 ns detection window, while the H(2) production rate increases by a factor of ~4. There is no discernible effect of crystallinity on the photoluminescence dynamics excited at 350 or 430 nm, or on the electronic dynamics measured by femtosecond transient absorption after excitation at 300 nm. We hypothesize that high-energy photons create reactive and emissive charge-separated states in parallel, and that both species are subject to similar electron-hole recombination processes that depend on sample crystallinity. Based on our observations, it can be concluded that the photoluminescence dynamics may be used to evaluate the potential performance of this class of photocatalysts.
منابع مشابه
Preparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon
In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...
متن کاملDye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen
Pt@TiO2 core-shell nanostructures were prepared through a hydrothermal method. The dye-sensitization of these Pt@TiO2 core-shell structures allows for a high photocatalytic activity for the generation of hydrogen from proton reduction under visible-light irradiation. When the dyes and TiO2 were co-excited through the combination of two irradiation beams with different wavelengths, a synergic ef...
متن کاملDegradation of Phthalocyanine by a Core-Shell TiO2 Photocatalyst: Effect of Iron Dopping on Band Gap
In this research, initially, the sol-gel method was employed to produce γ-alumina and TiO2 catalysts with core-shell structure. Iron (III) was used as a dopant. The newlyproduced core-shells were Fe/TiO2// Fe/ γ-Al2O3 (FTFA). Sulfonated cobalt phthalocyanine was used as a dye pollutant in Merox process. By doping Fe in TiO2 catalyst, the ef...
متن کاملUltrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.
In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary ...
متن کاملOptimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.
The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance of these materials towards the reforming of alcohols for hydrogen production. The core-shell structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2013